Pular para o conteúdo principal

SPARQL-Star x Query using Context Meta-information (RDF-Star)

Utilizando o recurso de RDF-Star onde cada tripla pode ser anotada com predicado e valor

Testes via Apache Jena Fuseki no desktop

Instalação

JDK

https://medium.com/@fadirra/setting-up-jena-fuseki-with-update-in-windows-10-2c8a2802ee8f

Download para WIndows
Unzip
Cria a pasta data

cmd
cd C:\Users\.....\apache-jena-fuseki-4.3.2
fuseki-server --loc=data --update /meta_info

http://localhost:3030/index.html

DATASET

Testes


SPARQL EndPoint /meta_info/update


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT DATA {ns:c1 rdf:type ns:Country; ns:name 'Germany';  ns:language 'German'; ns:continent 'Europe'; ns:population 83000000 };
INSERT DATA {ns:c2 rdf:type ns:Country; ns:name 'France'; ns:language 'French'; ns:continent 'Europe'; ns:population 67000000 };
INSERT DATA {ns:c3 rdf:type ns:Country; ns:name 'United Kingdom'; ns:language 'English'; ns:continent 'Europe'; ns:population: 66000000 };

INSERT DATA {ns:p1 rdf:type ns:Person; ns:name 'John' };
INSERT DATA {ns:p2 rdf:type ns:Person; ns:name 'Harry'};
INSERT DATA {ns:p3 rdf:type ns:Person; ns:name 'Anna'};

INSERT DATA {ns:p1 ns:LIVING_IN ns:c1};
INSERT DATA {<<ns:p1 ns:LIVING_IN ns:c1>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:WORKING_IN ns:c2};
INSERT DATA {<<ns:p1 ns:WORKING_IN ns:c2>>  ns:date_of_start 2014};

INSERT DATA {ns:p1 ns:LIVING_IN ns:c3};
INSERT DATA {<<ns:p1 ns:LIVING_IN ns:c3>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:WORKING_IN ns:c3};
INSERT DATA {<<ns:p1 ns:WORKING_IN ns:c3>>  ns:date_of_start 2014};

INSERT DATA {ns:p3 ns:LIVING_IN ns:c1};
INSERT DATA {<<ns:p3 ns:LIVING_IN ns:c1>>  ns:date_of_start 2016};
INSERT DATA {ns:p3 ns:WORKING_IN ns:c3};
INSERT DATA {<<ns:p3 ns:WORKING_IN ns:c3>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:FRIENDS_WITH ns:p2};
INSERT DATA {<<ns:p1 ns:FRIENDS_WITH ns:p2>>  ns:date_of_start 2011};
INSERT DATA {ns:p3 ns:FRIENDS_WITH ns:p1};
INSERT DATA {<<ns:p3 ns:FRIENDS_WITH ns:p1>>  ns:date_of_start 2012};
INSERT DATA {ns:p3 ns:FRIENDS_WITH ns:p2};
INSERT DATA {<<ns:p3 ns:FRIENDS_WITH ns:p2>>  ns:date_of_start 2014};

--

SPARQL EndPoint /meta_info/query


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

# View quads
SELECT ?s ?p ?o ?g {
  # default graph
  { ?s ?p ?o . }
  UNION
  # named graphs
  { GRAPH ?g { ?s ?p ?o . }  }
}

--

SELECT ?s ?p ?o ?g { GRAPH ?g { ?s ?p ?o . }  }

--

SELECT ?s ?p ?o { ?s ?p ?o . }  

Exemplo do resultado em XML

    <result>
      <binding name="s">
        <triple>
          <subject>
            <uri>http://example.org/ns#p1</uri>
          </subject>
          <predicate>
            <uri>http://example.org/ns#WORKING_IN</uri>
          </predicate>
          <object>
            <uri>http://example.org/ns#c3</uri>
          </object>
        </triple>
      </binding>
      <binding name="p">
        <uri>http://example.org/ns#date_of_start</uri>
      </binding>
      <binding name="o">
        <literal datatype="http://www.w3.org/2001/XMLSchema#integer">2014</literal>
      </binding>
    </result>

Exemplo do resultado em JSON

      {
        "s": {
          "type": "triple" ,
          "value": {
            "subject":  { "type": "uri" , "value": "http://example.org/ns#p1" } ,
            "predicate": { "type": "uri" , "value": "http://example.org/ns#LIVING_IN" } ,
            "object":   { "type": "uri" , "value": "http://example.org/ns#c1" }
          }
        } ,
        "p": { "type": "uri" , "value": "http://example.org/ns#date_of_start" } ,
        "o": { "type": "literal" , "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "value": "2014" }
      } ,
      
--

SELECT ?s ?p ?c ?t
{ ?c rdf:type  ns:Country; ns:name 'United Kingdom'.
  <<?s ?p ?c>> ns:date_of_start 2014 .
  BIND(<< ?s ?p ?c>> AS ?t)}

--

SELECT ?p_name ?f_name ?o ?t
WHERE {
    ?p rdf:type ns:Person; ns:name ?p_name.
    ?f ns:name ?f_name.
    <<?p ns:FRIENDS_WITH ?f>>  ns:date_of_start ?o.
    BIND(<<?p ns:FRIENDS_WITH ?f>> AS ?t)
    FILTER (?o > 2010) .
}

--

SELECT ?p_name ?f_name ?o ?t2
WHERE {
    ?p rdf:type ns:Person; ns:name ?p_name.
    ?f2 ns:name ?f_name.
    <<?p ns:FRIENDS_WITH ?f1>>  ns:date_of_start ?o1.
    <<?p ns:FRIENDS_WITH ?f2>>  ns:date_of_start ?o2.
    BIND(<<?p ns:FRIENDS_WITH ?f2>> AS ?t2)
    FILTER (?o2 > ?o1) .
}

Resultado em JSON

{ "head": {
    "vars": [ "p_name" , "f_name" , "o" , "t2" ]
  } ,
  "results": {
    "bindings": [
      {
        "p_name": { "type": "literal" , "value": "Anna" } ,
        "f_name": { "type": "literal" , "value": "Harry" } ,
        "t2": {
          "type": "triple" ,
          "value": {
            "subject":  { "type": "uri" , "value": "http://example.org/ns#p3" } ,
            "predicate": { "type": "uri" , "value": "http://example.org/ns#FRIENDS_WITH" } ,
            "object":   { "type": "uri" , "value": "http://example.org/ns#p2" }
          }
        }
      }
    ]
  }
}
--

SELECT ?p1_name ?p2_name ?p3_name ?p4_name ?o ?t2
WHERE {
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    ?p3 rdf:type ns:Person; ns:name ?p3_name.
    ?p4 rdf:type ns:Person; ns:name ?p4_name.
    <<?p1 ns:FRIENDS_WITH ?p3>>  ns:date_of_start ?o.
    <<?p2 ns:FRIENDS_WITH ?p4>>  ns:date_of_start ?o.
    BIND(<<?p ns:FRIENDS_WITH ?f2>> AS ?t2)
    FILTER (?p1 != ?p2) .
}

--

SELECT ?p1_name ?p2_name ?c1_name ?c2_name ?o ?t2
WHERE {
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    ?c1 rdf:type ns:Country; ns:name ?c1_name.
    ?c2 rdf:type ns:Country; ns:name ?c2_name.
    <<?p1 ns:LIVING_IN ?c1>>  ns:date_of_start ?o.
    <<?p2 ns:LIVING_IN ?c2>>  ns:date_of_start ?o.
    BIND(<<?p2 ns:LIVING_IN ?c2>> AS ?t2)
    FILTER (?c1 != ?c2) .
}

--

SELECT DISTINCT ?s1_name ?rel1 ?o1_name ?s2_name ?rel2 ?o2_name ?o
WHERE {
    ?s1 ns:name ?s1_name.
    ?s2 ns:name ?s2_name.
    ?o1 ns:name ?o1_name.
    ?o2 ns:name ?o2_name.
    <<?s1 ?rel1 ?o1>>  ns:date_of_start ?o.
    <<?s2 ?rel2 ?o2>>  ns:date_of_start ?o.
      BIND(<<?s1 ?rel1 ?o1>> AS ?t1)
    BIND(<<?s2 ?rel2 ?o2>> AS ?t2)
    FILTER (?t1 != ?t2) .
}

--

SELECT ?p1_name ?p2_name ?since ?t
WHERE {
    ?p1 ns:FRIENDS_WITH+ ?p2.
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    <<?p1 ns:FRIENDS_WITH ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_WITH ?p2>> AS ?t)
    FILTER (?since > 2010) .
}

--


SPARQL EndPoint /meta_info/update

PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT DATA {<<ns:p1 ns:FRIENDS_OF ns:p2>>  ns:date_of_start 2018};
INSERT DATA {<<ns:p3 ns:FRIENDS_OF ns:p1>>  ns:date_of_start 2019} ;
INSERT DATA {<<ns:p3 ns:FRIENDS_OF ns:p2>>  ns:date_of_start 2017} ;
INSERT DATA {ns:p1 ns:FRIENDS_OF ns:p2};
INSERT DATA {ns:p3 ns:FRIENDS_OF ns:p1};
INSERT DATA {ns:p3 ns:FRIENDS_OF ns:p2};

SPARQL EndPoint /meta_info/query


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?since ?t
WHERE {
    ns:p3 ns:FRIENDS_OF+ ns:p2.
    <<?p1 ns:FRIENDS_OF ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_OF ?p2>> AS ?t)
    FILTER (?since > 2016) .
}

SELECT ?since ?t
WHERE {
    ns:p3 ns:FRIENDS_OF+ ns:p2.
    <<?p1 ns:FRIENDS_OF ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_OF ?p2>> AS ?t)
    FILTER (?since > 2017) .
}

As consultas do tipo property path em SPARQL e SPARQL-Star retornam apenas os nós inicial e final de um caminho e não permitem variáveis ​​em expressões regulares para os predicados dos caminhos. Dessa forma, as consultas de caminho não retornam todos os nós intermediários em cada caminho. Adicionalmente um caminho de triplas RDF não pode ser representado naturalmente no formato de resultados tabulares de SPARQL.Com isso não é possível associar as triplas RDF recuperadas com as triplas RDF-Star associadas aos pares chave/valor dos qualificadores. 

Comentários

  1. Sobre essa questão das consultas de caminho, abri essa thread no SPARQL-Star
    https://github.com/w3c/rdf-star/issues/248#issuecomment-1022943523

    Porém é um limitação do próprio SPARQL e não especificamente do modelo RDF-Star.

    ResponderExcluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Aula 12: WordNet | Introdução à Linguagem de Programação Python *** com NLTK

 Fonte -> https://youtu.be/0OCq31jQ9E4 A WordNet do Brasil -> http://www.nilc.icmc.usp.br/wordnetbr/ NLTK  synsets = dada uma palavra acha todos os significados, pode informar a língua e a classe gramatical da palavra (substantivo, verbo, advérbio) from nltk.corpus import wordnet as wn wordnet.synset(xxxxxx).definition() = descrição do significado É possível extrair hipernimia, hiponimia, antonimos e os lemas (diferentes palavras/expressões com o mesmo significado) formando uma REDE LEXICAL. Com isso é possível calcular a distância entre 2 synset dentro do grafo.  Veja trecho de código abaixo: texto = 'útil' print('NOUN:', wordnet.synsets(texto, lang='por', pos=wordnet.NOUN)) texto = 'útil' print('ADJ:', wordnet.synsets(texto, lang='por', pos=wordnet.ADJ)) print(wordnet.synset('handy.s.01').definition()) texto = 'computador' for synset in wn.synsets(texto, lang='por', pos=wn.NOUN):     print('DEF:',s...

Exploratory Search: Beyond the Query-Response Paradigm - Leitura de Livro II

Exploratory Search: Beyond the Query-Response Paradigm Ryen W. White and Resa A. Roth Synthesis Lectures on Information Concepts, Retrieval, and Services, 2009, Vol. 1, No. 1 , Pages 1-98 (https://doi.org/10.2200/S00174ED1V01Y200901ICR003)  Related Work Bates (2004) suggests that browsing is a cognitive and behavioral expression of exploratory behavior and she claims that it has four elements: (1) glimpse a scene; (2) target an element of a scene visually and/or physically (if two or more elements are of interest, they are examined serially, not in parallel); (3) examine item (s) of interest; and (4) physically or conceptually acquire or abandon examined item(s). This sequence is repeated indefinitely as people explore in satisfaction of their curiosity. To this end, exploratory search systems should offer collection overviews (glimpses), the ability to traverse trails through the collection (exploratory browsing), and document examination/retention. Bates (1989) developed the berr...