Pular para o conteúdo principal

SPARQL-Star x Query using Context Meta-information (RDF-Star)

Utilizando o recurso de RDF-Star onde cada tripla pode ser anotada com predicado e valor

Testes via Apache Jena Fuseki no desktop

Instalação

JDK

https://medium.com/@fadirra/setting-up-jena-fuseki-with-update-in-windows-10-2c8a2802ee8f

Download para WIndows
Unzip
Cria a pasta data

cmd
cd C:\Users\.....\apache-jena-fuseki-4.3.2
fuseki-server --loc=data --update /meta_info

http://localhost:3030/index.html

DATASET

Testes


SPARQL EndPoint /meta_info/update


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT DATA {ns:c1 rdf:type ns:Country; ns:name 'Germany';  ns:language 'German'; ns:continent 'Europe'; ns:population 83000000 };
INSERT DATA {ns:c2 rdf:type ns:Country; ns:name 'France'; ns:language 'French'; ns:continent 'Europe'; ns:population 67000000 };
INSERT DATA {ns:c3 rdf:type ns:Country; ns:name 'United Kingdom'; ns:language 'English'; ns:continent 'Europe'; ns:population: 66000000 };

INSERT DATA {ns:p1 rdf:type ns:Person; ns:name 'John' };
INSERT DATA {ns:p2 rdf:type ns:Person; ns:name 'Harry'};
INSERT DATA {ns:p3 rdf:type ns:Person; ns:name 'Anna'};

INSERT DATA {ns:p1 ns:LIVING_IN ns:c1};
INSERT DATA {<<ns:p1 ns:LIVING_IN ns:c1>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:WORKING_IN ns:c2};
INSERT DATA {<<ns:p1 ns:WORKING_IN ns:c2>>  ns:date_of_start 2014};

INSERT DATA {ns:p1 ns:LIVING_IN ns:c3};
INSERT DATA {<<ns:p1 ns:LIVING_IN ns:c3>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:WORKING_IN ns:c3};
INSERT DATA {<<ns:p1 ns:WORKING_IN ns:c3>>  ns:date_of_start 2014};

INSERT DATA {ns:p3 ns:LIVING_IN ns:c1};
INSERT DATA {<<ns:p3 ns:LIVING_IN ns:c1>>  ns:date_of_start 2016};
INSERT DATA {ns:p3 ns:WORKING_IN ns:c3};
INSERT DATA {<<ns:p3 ns:WORKING_IN ns:c3>>  ns:date_of_start 2014};
INSERT DATA {ns:p1 ns:FRIENDS_WITH ns:p2};
INSERT DATA {<<ns:p1 ns:FRIENDS_WITH ns:p2>>  ns:date_of_start 2011};
INSERT DATA {ns:p3 ns:FRIENDS_WITH ns:p1};
INSERT DATA {<<ns:p3 ns:FRIENDS_WITH ns:p1>>  ns:date_of_start 2012};
INSERT DATA {ns:p3 ns:FRIENDS_WITH ns:p2};
INSERT DATA {<<ns:p3 ns:FRIENDS_WITH ns:p2>>  ns:date_of_start 2014};

--

SPARQL EndPoint /meta_info/query


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

# View quads
SELECT ?s ?p ?o ?g {
  # default graph
  { ?s ?p ?o . }
  UNION
  # named graphs
  { GRAPH ?g { ?s ?p ?o . }  }
}

--

SELECT ?s ?p ?o ?g { GRAPH ?g { ?s ?p ?o . }  }

--

SELECT ?s ?p ?o { ?s ?p ?o . }  

Exemplo do resultado em XML

    <result>
      <binding name="s">
        <triple>
          <subject>
            <uri>http://example.org/ns#p1</uri>
          </subject>
          <predicate>
            <uri>http://example.org/ns#WORKING_IN</uri>
          </predicate>
          <object>
            <uri>http://example.org/ns#c3</uri>
          </object>
        </triple>
      </binding>
      <binding name="p">
        <uri>http://example.org/ns#date_of_start</uri>
      </binding>
      <binding name="o">
        <literal datatype="http://www.w3.org/2001/XMLSchema#integer">2014</literal>
      </binding>
    </result>

Exemplo do resultado em JSON

      {
        "s": {
          "type": "triple" ,
          "value": {
            "subject":  { "type": "uri" , "value": "http://example.org/ns#p1" } ,
            "predicate": { "type": "uri" , "value": "http://example.org/ns#LIVING_IN" } ,
            "object":   { "type": "uri" , "value": "http://example.org/ns#c1" }
          }
        } ,
        "p": { "type": "uri" , "value": "http://example.org/ns#date_of_start" } ,
        "o": { "type": "literal" , "datatype": "http://www.w3.org/2001/XMLSchema#integer" , "value": "2014" }
      } ,
      
--

SELECT ?s ?p ?c ?t
{ ?c rdf:type  ns:Country; ns:name 'United Kingdom'.
  <<?s ?p ?c>> ns:date_of_start 2014 .
  BIND(<< ?s ?p ?c>> AS ?t)}

--

SELECT ?p_name ?f_name ?o ?t
WHERE {
    ?p rdf:type ns:Person; ns:name ?p_name.
    ?f ns:name ?f_name.
    <<?p ns:FRIENDS_WITH ?f>>  ns:date_of_start ?o.
    BIND(<<?p ns:FRIENDS_WITH ?f>> AS ?t)
    FILTER (?o > 2010) .
}

--

SELECT ?p_name ?f_name ?o ?t2
WHERE {
    ?p rdf:type ns:Person; ns:name ?p_name.
    ?f2 ns:name ?f_name.
    <<?p ns:FRIENDS_WITH ?f1>>  ns:date_of_start ?o1.
    <<?p ns:FRIENDS_WITH ?f2>>  ns:date_of_start ?o2.
    BIND(<<?p ns:FRIENDS_WITH ?f2>> AS ?t2)
    FILTER (?o2 > ?o1) .
}

Resultado em JSON

{ "head": {
    "vars": [ "p_name" , "f_name" , "o" , "t2" ]
  } ,
  "results": {
    "bindings": [
      {
        "p_name": { "type": "literal" , "value": "Anna" } ,
        "f_name": { "type": "literal" , "value": "Harry" } ,
        "t2": {
          "type": "triple" ,
          "value": {
            "subject":  { "type": "uri" , "value": "http://example.org/ns#p3" } ,
            "predicate": { "type": "uri" , "value": "http://example.org/ns#FRIENDS_WITH" } ,
            "object":   { "type": "uri" , "value": "http://example.org/ns#p2" }
          }
        }
      }
    ]
  }
}
--

SELECT ?p1_name ?p2_name ?p3_name ?p4_name ?o ?t2
WHERE {
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    ?p3 rdf:type ns:Person; ns:name ?p3_name.
    ?p4 rdf:type ns:Person; ns:name ?p4_name.
    <<?p1 ns:FRIENDS_WITH ?p3>>  ns:date_of_start ?o.
    <<?p2 ns:FRIENDS_WITH ?p4>>  ns:date_of_start ?o.
    BIND(<<?p ns:FRIENDS_WITH ?f2>> AS ?t2)
    FILTER (?p1 != ?p2) .
}

--

SELECT ?p1_name ?p2_name ?c1_name ?c2_name ?o ?t2
WHERE {
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    ?c1 rdf:type ns:Country; ns:name ?c1_name.
    ?c2 rdf:type ns:Country; ns:name ?c2_name.
    <<?p1 ns:LIVING_IN ?c1>>  ns:date_of_start ?o.
    <<?p2 ns:LIVING_IN ?c2>>  ns:date_of_start ?o.
    BIND(<<?p2 ns:LIVING_IN ?c2>> AS ?t2)
    FILTER (?c1 != ?c2) .
}

--

SELECT DISTINCT ?s1_name ?rel1 ?o1_name ?s2_name ?rel2 ?o2_name ?o
WHERE {
    ?s1 ns:name ?s1_name.
    ?s2 ns:name ?s2_name.
    ?o1 ns:name ?o1_name.
    ?o2 ns:name ?o2_name.
    <<?s1 ?rel1 ?o1>>  ns:date_of_start ?o.
    <<?s2 ?rel2 ?o2>>  ns:date_of_start ?o.
      BIND(<<?s1 ?rel1 ?o1>> AS ?t1)
    BIND(<<?s2 ?rel2 ?o2>> AS ?t2)
    FILTER (?t1 != ?t2) .
}

--

SELECT ?p1_name ?p2_name ?since ?t
WHERE {
    ?p1 ns:FRIENDS_WITH+ ?p2.
    ?p1 rdf:type ns:Person; ns:name ?p1_name.
    ?p2 rdf:type ns:Person; ns:name ?p2_name.
    <<?p1 ns:FRIENDS_WITH ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_WITH ?p2>> AS ?t)
    FILTER (?since > 2010) .
}

--


SPARQL EndPoint /meta_info/update

PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

INSERT DATA {<<ns:p1 ns:FRIENDS_OF ns:p2>>  ns:date_of_start 2018};
INSERT DATA {<<ns:p3 ns:FRIENDS_OF ns:p1>>  ns:date_of_start 2019} ;
INSERT DATA {<<ns:p3 ns:FRIENDS_OF ns:p2>>  ns:date_of_start 2017} ;
INSERT DATA {ns:p1 ns:FRIENDS_OF ns:p2};
INSERT DATA {ns:p3 ns:FRIENDS_OF ns:p1};
INSERT DATA {ns:p3 ns:FRIENDS_OF ns:p2};

SPARQL EndPoint /meta_info/query


PREFIX ns: <http://example.org/ns#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?since ?t
WHERE {
    ns:p3 ns:FRIENDS_OF+ ns:p2.
    <<?p1 ns:FRIENDS_OF ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_OF ?p2>> AS ?t)
    FILTER (?since > 2016) .
}

SELECT ?since ?t
WHERE {
    ns:p3 ns:FRIENDS_OF+ ns:p2.
    <<?p1 ns:FRIENDS_OF ?p2>>  ns:date_of_start ?since.
      BIND(<<?p1 ns:FRIENDS_OF ?p2>> AS ?t)
    FILTER (?since > 2017) .
}

As consultas do tipo property path em SPARQL e SPARQL-Star retornam apenas os nós inicial e final de um caminho e não permitem variáveis ​​em expressões regulares para os predicados dos caminhos. Dessa forma, as consultas de caminho não retornam todos os nós intermediários em cada caminho. Adicionalmente um caminho de triplas RDF não pode ser representado naturalmente no formato de resultados tabulares de SPARQL.Com isso não é possível associar as triplas RDF recuperadas com as triplas RDF-Star associadas aos pares chave/valor dos qualificadores. 

Comentários

  1. Sobre essa questão das consultas de caminho, abri essa thread no SPARQL-Star
    https://github.com/w3c/rdf-star/issues/248#issuecomment-1022943523

    Porém é um limitação do próprio SPARQL e não especificamente do modelo RDF-Star.

    ResponderExcluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graph Embedding with Triple Context - Leitura de Abstract

  Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. 2017. Knowledge Graph Embedding with Triple Context. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). Association for Computing Machinery, New York, NY, USA, 2299–2302. https://doi.org/10.1145/3132847.3133119 ABSTRACT Knowledge graph embedding, which aims to represent entities and relations in vector spaces, has shown outstanding performance on a few knowledge graph completion tasks. Most existing methods are based on the assumption that a knowledge graph is a set of separate triples, ignoring rich graph features, i.e., structural information in the graph. In this paper, we take advantages of structures in knowledge graphs, especially local structures around a triple, which we refer to as triple context. We then propose a Triple-Context-based knowledge Embedding model (TCE). For each triple, two kinds of structure information are considered as its context in the graph; one is the out...

Exploratory Search: From Finding to Understanding - Leitura de Artigo

Gary Marchionini. 2006. Exploratory search: from finding to understanding. Commun. ACM  49, 4 (April 2006), 41–46. https://doi.org/10.1145/1121949.1121979   This article distinguishes exploratory search that blends quer ying and browsing strategies from retrieval that is best served by analytical strategies ...   Exploratory search. Search is a fundamental life activity.   A hierarchy of information needs may also be defined that ranges from basic facts that guide short-term actions (for example, the predicted chance for rain today to decide whether to bring an umbr ella) to networks of related concepts that help us under stand phenomena or execute complex activities (for example, the relationships between bond prices and stock prices to manage a retirement portfolio) to com plex networks of tacit and explicit knowledge that accretes as expertise over a lifetime (for example, the most promising paths of investigation for the sea soned scholar or designer)....