Pular para o conteúdo principal

Knowledge Graphs Querying - Leitura de Artigo

Arijit Khan. 2023. Knowledge Graphs Querying. SIGMOD Rec. 52, 2 (June 2023), 18–29. https://doi.org/10.1145/3615952.3615956

ABSTRACT
Querying KGs is critical in web search, question answering (QA), semantic search, personal assistants, fact checking, and recommendation.

[Sistemas / tarefas onde consulta aos KGs é usada]

First, research on KG querying has been conducted by several communities, such as databases, data mining, semantic web, machine learning, information retrieval, and natural language processing (NLP), with different focus and terminologies; and also in diverse topics ranging from graph databases, query languages, join algorithms, graph patterns matching, to more sophisticated KG embedding and natural language questions (NLQs).

[Diversas perspectivas sobre os problemas que as consultas em KG trazem]

Second, many recent advances on KG and query embedding, multimodal KG, and KG-QA come from deep learning, IR, NLP, and computer vision domains. 

[De quais comunidades estão sendo propostas soluções e quais os problemas que ainda estão em aberto como por exemplo lidar com Incompletude]

1 Introduction

[KG para integração de fontes de dados com esquema flexível]

1.1 Challenges in KG Querying

Scalability and efficiency of graph query processing ....

Additionally, the notion of ‘relevant’ or ‘correct’ answers could very well depend on the user’s query intent, or can even be vague, thus a predefined, ‘one-size-fits-all’ similarity metric might not work in all scenarios.

[As abordagens de similaridade não dependem da tarefa]

Incomplete KGs. Knowledge graphs are incomplete and follow the open-world assumption — information
available in a KG only captures a subset of reality. To retrieve the complete set of correct answers for a given query, one must infer missing edges and relations.

[Completar o KG com dados do próprio KG ou de fontes externas] 

User-friendly querying

[Formulação interativa de consultas, completar, explicar]

2 Taxonomy of KG Querying

Graph workloads are broadly classified into two categories [67]: (1) online graph queries consisting of adhoc graph traversal and pattern matching – exploring a small fraction of the entire graph and requiring fast response time; (2) offline graph analytics with iterative, batch processing over the entire graph, e.g., PageRank, clustering, community detection, and machine learning algorithms.

The focus of this article is read-only online queries without updates in the KG. KG querying is essential for web search [129], QA [119], semantic search [155], personal assistants [12], fact checking [143], and recommendation [167].

[CaKQ Query Engine é online graph query] 

2.1 KG Data Models

[RDF e LPG]

2.2 KG Query and Question Classification

[Traduzir Pergunta em Consulta]

[Consulta simples ou complexa. Conjunção, Disjunção, Negação, etc ... Caminhos]

[Factoides x Agregada/Abstrata]

2.3 KG Query Languages & Technologies

[SPARQL, Cypher, GQL, Extensões para SQL, ...]

[Keyword]

2.4 Benchmarks for KG Query & QA

3 KG Query Processing & QA: Recent Neural Methods 

3.1 Embedding-based KG Query Processing

[Converter o KG e as consultas e achar a distância]

3.2 Multi-modal KG Embedding

3.3 Neural Methods for KG-QA

Answering natural language questions (NLQ) over knowledge graphs involve several subtasks including entity linking, relationships identification, identifying logical and numerical operators, query forms, intent, and finally the formal query construction [111]. Rule-based methods use ontologies and KG for phrase mapping and disambiguation to link entities and relations to the KG, and then employ grammars to generate formal queries.

Recently, neural network-based semantic parsing algorithms have become popular for KG-QA, which are categorized as classification, ranking, and translation-based [28]. 

3.4 Conversational QA on KG

4 Graph Databases Support for KG Query

5 Future Directions

Therefore, KGs can be a unified data model for complex data lake problems, to model cross-domain and diverse data.

Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graphs as a source of trust for LLM-powered enterprise question answering - Leitura de Artigo

J. Sequeda, D. Allemang and B. Jacob, Knowledge Graphs as a source of trust for LLM-powered enterprise question answering, Web Semantics: Science, Services and Agents on the World Wide Web (2025), doi: https://doi.org/10.1016/j.websem.2024.100858. 1. Introduction These question answering systems that enable to chat with your structured data hold tremendous potential for transforming the way self service and data-driven decision making is executed within enterprises. Self service and data-driven decision making in organizations today is largly made through Business Intelligence (BI) and analytics reporting. Data teams gather the original data, integrate the data, build a SQL data warehouse (i.e. star schemas), and create BI dashboards and reports that are then used by business users and analysts to answer specific questions (i.e. metrics, KPIs) and make decisions. The bottleneck of this approach is that business users are only able to answer questions given the views of existing dashboa...

Knowledge Graph Toolkit (KGTK)

https://kgtk.readthedocs.io/en/latest/ KGTK represents KGs using TSV files with 4 columns labeled id, node1, label and node2. The id column is a symbol representing an identifier of an edge, corresponding to the orange circles in the diagram above. node1 represents the source of the edge, node2 represents the destination of the edge, and label represents the relation between node1 and node2. >> Quad do RDF, definir cada tripla como um grafo   KGTK defines knowledge graphs (or more generally any attributed graph or hypergraph ) as a set of nodes and a set of edges between those nodes. KGTK represents everything of meaning via an edge. Edges themselves can be attributed by having edges asserted about them, thus, KGTK can in fact represent arbitrary hypergraphs. KGTK intentionally does not distinguish attributes or qualifiers on nodes and edges from full-fledged edges, tools operating on KGTK graphs can instead interpret edges differently if they so desire. In KGTK, e...