Pular para o conteúdo principal

KGTK Tutorial @ ISWC'21 - 24 de Outubro

Links 

https://usc-isi-i2.github.io/kgtk-tutorial-iswc-2021/

https://iswc2021.semanticweb.org/tutorial-schedule

 

Programa

Introduction to the KGs and available KG toolkits

Basic KGTK
Introduction to KGTK file format and basic commands
Hands-on: importing (Wikidata, DBpedia), filtering, combining graphs, deployment, exporting

Advanced KGTK
Introduction to KGTK advanced functionalities
Hands-on: Kypher, embeddings, centrality, paths

Use cases part I
Use case 1: Building a Commonsense Knowledge Graph
Use case 2: Analysis of all 300+ dumps of Wikidata
    
Use cases part II & Discussion
Use case 3: Enriching Wikidata with Excel Spreadsheets & Web Tables
Wrap-up and discussion

Comentários

  1. Preciso acompanhar quando abre as inscrições

    ResponderExcluir
    Respostas
    1. Registration is now open for this year’s virtual conference, ISWC 2021, October 26 – 28, with Workshops and Tutorials scheduled for October24 and 25.

      Please go to iswc2021.semanticweb.org to register! The program is still being sorted out and will appear as quickly as possible.

      The main blocks are:

      Oct 24 and 25 – Workshops and Tutorials

      Oct 26 – 28 – Main Program with Keynotes at the start of each day followed by sessions from all tracks.

      Meantime, please visit the Accepted Papers link in the Program menu to see what’s happening this year!

      Please spread the word!

      Thanks
      Kathy (Local Organizing Chair)

      Excluir
    2. 50 doláres, 300 reais somente para o tutorial.

      Excluir
  2. Since some asked, here is a summary of all the resources:
    Hands-on materials: https://github.com/usc-isi-i2/kgtk-notebooks/
    Colab Notebooks: https://github.com/usc-isi-i2/kgtk-notebooks#running-the-notebooks-in-google-colab
    Slides: https://github.com/usc-isi-i2/kgtk-notebooks/tree/main/slides
    KGTK documentation: https://kgtk.readthedocs.io/
    Similarity GUI: https://kgtk.isi.edu/similarity/
    KGTK Search: https://kgtk.isi.edu/search/
    KGTK Browser: https://kgtk.isi.edu/iswc/browser/Q2685
    Resource paper (ESWC'20): https://arxiv.org/pdf/2006.00088.pdf
    KGTK on GitHub: https://github.com/usc-isi-i2/kgtk/ (edited)

    ResponderExcluir
    Respostas
    1. Fiz os testes com os notebooks no Goggle Colab e salvei no meu GitHub. Ainda preciso entender melhor o notebook 03 sobre embeddings.

      Excluir
    2. A etapa de Link Prediction do notebook 03 só funciona com o algoritmo ComplEx. Tentei com DistMult, TransE e RESCAL e não se adequa. Os demais passos de geração dos embeddings e do calculo de similaridade (usando gensim) entendi.

      Excluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Aprendizado de Máquina Relacional

 Extraído de -> https://www.lncc.br/~ziviani/papers/Texto-MC1-SBBD2019.pdf   Aprendizado de máquina relacional (AMR) destina-se à criação de modelos estatísticos para dados relacionais (seria o mesmo que dados conectados) , isto é, dados cuja a informação relacional é tão ou mais impor tante que a informação individual (atributos) de cada elemento.    Essa classe de aprendizado tem sido utilizada em diversas aplicações, por exemplo, na extração de informação de dados não estruturados [Zhang et al. 2016] e na modelagem de linguagem natural [Vu et al. 2018].   A adoção de técnicas de aprendizado de máquina relacional em tarefas de comple mentação de grafo de conhecimento se baseia na premissa de existência de regularidades semânticas presentes no mesmo . Modelos grafos probabilísticos  Baseada em regras / heurísticas que não podem garantir 100% de precisão no resultado da inferência mas os resultados podem ser explicados. Modelos de características de ...

KnOD 2021

Beyond Facts: Online Discourse and Knowledge Graphs A preface to the proceedings of the 1st International Workshop on Knowledge Graphs for Online Discourse Analysis (KnOD 2021, co-located with TheWebConf’21) https://ceur-ws.org/Vol-2877/preface.pdf https://knod2021.wordpress.com/   ABSTRACT Expressing opinions and interacting with others on the Web has led to the production of an abundance of online discourse data, such as claims and viewpoints on controversial topics, their sources and contexts . This data constitutes a valuable source of insights for studies into misinformation spread, bias reinforcement, echo chambers or political agenda setting. While knowledge graphs promise to provide the key to a Web of structured information, they are mainly focused on facts without keeping track of the diversity, connection or temporal evolution of online discourse data. As opposed to facts, claims are inherently more complex. Their interpretation strongly depends on the context and a vari...