Pular para o conteúdo principal

KGTK Tutorial @ ISWC'21 - 24 de Outubro

Links 

https://usc-isi-i2.github.io/kgtk-tutorial-iswc-2021/

https://iswc2021.semanticweb.org/tutorial-schedule

 

Programa

Introduction to the KGs and available KG toolkits

Basic KGTK
Introduction to KGTK file format and basic commands
Hands-on: importing (Wikidata, DBpedia), filtering, combining graphs, deployment, exporting

Advanced KGTK
Introduction to KGTK advanced functionalities
Hands-on: Kypher, embeddings, centrality, paths

Use cases part I
Use case 1: Building a Commonsense Knowledge Graph
Use case 2: Analysis of all 300+ dumps of Wikidata
    
Use cases part II & Discussion
Use case 3: Enriching Wikidata with Excel Spreadsheets & Web Tables
Wrap-up and discussion

Comentários

  1. Preciso acompanhar quando abre as inscrições

    ResponderExcluir
    Respostas
    1. Registration is now open for this year’s virtual conference, ISWC 2021, October 26 – 28, with Workshops and Tutorials scheduled for October24 and 25.

      Please go to iswc2021.semanticweb.org to register! The program is still being sorted out and will appear as quickly as possible.

      The main blocks are:

      Oct 24 and 25 – Workshops and Tutorials

      Oct 26 – 28 – Main Program with Keynotes at the start of each day followed by sessions from all tracks.

      Meantime, please visit the Accepted Papers link in the Program menu to see what’s happening this year!

      Please spread the word!

      Thanks
      Kathy (Local Organizing Chair)

      Excluir
    2. 50 doláres, 300 reais somente para o tutorial.

      Excluir
  2. Since some asked, here is a summary of all the resources:
    Hands-on materials: https://github.com/usc-isi-i2/kgtk-notebooks/
    Colab Notebooks: https://github.com/usc-isi-i2/kgtk-notebooks#running-the-notebooks-in-google-colab
    Slides: https://github.com/usc-isi-i2/kgtk-notebooks/tree/main/slides
    KGTK documentation: https://kgtk.readthedocs.io/
    Similarity GUI: https://kgtk.isi.edu/similarity/
    KGTK Search: https://kgtk.isi.edu/search/
    KGTK Browser: https://kgtk.isi.edu/iswc/browser/Q2685
    Resource paper (ESWC'20): https://arxiv.org/pdf/2006.00088.pdf
    KGTK on GitHub: https://github.com/usc-isi-i2/kgtk/ (edited)

    ResponderExcluir
    Respostas
    1. Fiz os testes com os notebooks no Goggle Colab e salvei no meu GitHub. Ainda preciso entender melhor o notebook 03 sobre embeddings.

      Excluir
    2. A etapa de Link Prediction do notebook 03 só funciona com o algoritmo ComplEx. Tentei com DistMult, TransE e RESCAL e não se adequa. Os demais passos de geração dos embeddings e do calculo de similaridade (usando gensim) entendi.

      Excluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graph Embedding with Triple Context - Leitura de Abstract

  Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. 2017. Knowledge Graph Embedding with Triple Context. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). Association for Computing Machinery, New York, NY, USA, 2299–2302. https://doi.org/10.1145/3132847.3133119 ABSTRACT Knowledge graph embedding, which aims to represent entities and relations in vector spaces, has shown outstanding performance on a few knowledge graph completion tasks. Most existing methods are based on the assumption that a knowledge graph is a set of separate triples, ignoring rich graph features, i.e., structural information in the graph. In this paper, we take advantages of structures in knowledge graphs, especially local structures around a triple, which we refer to as triple context. We then propose a Triple-Context-based knowledge Embedding model (TCE). For each triple, two kinds of structure information are considered as its context in the graph; one is the out...

Exploratory Search: From Finding to Understanding - Leitura de Artigo

Gary Marchionini. 2006. Exploratory search: from finding to understanding. Commun. ACM  49, 4 (April 2006), 41–46. https://doi.org/10.1145/1121949.1121979   This article distinguishes exploratory search that blends quer ying and browsing strategies from retrieval that is best served by analytical strategies ...   Exploratory search. Search is a fundamental life activity.   A hierarchy of information needs may also be defined that ranges from basic facts that guide short-term actions (for example, the predicted chance for rain today to decide whether to bring an umbr ella) to networks of related concepts that help us under stand phenomena or execute complex activities (for example, the relationships between bond prices and stock prices to manage a retirement portfolio) to com plex networks of tacit and explicit knowledge that accretes as expertise over a lifetime (for example, the most promising paths of investigation for the sea soned scholar or designer)....