Pular para o conteúdo principal

truth makers AND truth bearers - Palestra Giancarlo no SBBD

Dando uma googada

https://iep.utm.edu/truth/

There are two commonly accepted constraints on truth and falsehood:

    Every proposition is true or false.         [Law of the Excluded Middle.]
    No proposition is both true and false.         [Law of Non-contradiction.]

What is the difference between a truth-maker and a truth bearer?

Truth-bearers are either true or false; truth-makers are not since, not being representations, they cannot be said to be true, nor can they be said to be false. That's a second difference. Truth-bearers are 'bipolar,' either true or false; truth-makers are 'unipolar': all of them obtain.

What are considered truth bearers?
 
A variety of truth bearers are considered – statements, beliefs, claims, assumptions, hypotheses, propositions, sentences, and utterances.

When I speak of a fact . . . I mean the kind of thing that makes a proposition true or false. (Russell, 1972, p. 36.)

“Truthmaker theories” hold that in order for any truthbearer to be true there must be something “outside the text,” as people might say, that “makes” it true. If the truth is a truth about inanimate objects, then the world must contain those inanimate objects; if it is about a God then there must be a God; if it is about the way people conduct their lives, then there must be people and they must conduct their lives in that way; and so on.  

What is an example of a truth bearer?
If a man utters the words 'It is raining' in the rain, or the words 'I am hungry' while hungry, his verbal performance counts as true. Obviously one utterance of a sentence may be true and another utterance of the same sentence be false.
 
Truthmakers are the things in the world in virtue of which truth bearers are true. For example, any individual human makes it true that humans exist.
 
Junto com a definição de contexto que estamos adotando
 
“By context, we herein refer to the scope of truth, and thus talk about the context in which some data are held to be true”

Hogan et al. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4, Article 71 (May 2022), 37 pages. https://doi.org/10.1145/3447772
 
Contextualized Claims from KG are truth beares 
 
Verdade ao ponto de confiar e agir baseado na informação depende do Contexto da Tarefa e dos Truth Makers que o tomador de decisão reconhece como verdadeiros.  
 

Comentários

  1. Na palestra do Giancarlo ele comentou sobre truth-makers e truth-bearers em relação às diferentes perspectivas que podem ser representadas em modelos conceituais. Eu li um pouco sobre estes conceitos na Enciclopédia de Filosofia de Standford - SEP (que o professor Hermann recomendou como referência para as definições de Verdade) e me parece que os CKGs, com a possibilidade de representar diferentes perspectivas através de alegações contextualizadas (e não fatos) sob a hipótese DOWA, seriam repositórios de truth-bearers (alegações, proposições, hipóteses, ...) enquanto que a Camada de Confiança, com as políticas de confiança baseadas inclusive em contexto, seria responsável por associar truth-bearers aos respectivos truth-makers (fatos).

    https://plato.stanford.edu/entries/truthmakers/
    https://plato.stanford.edu/entries/truth-pragmatic/

    ResponderExcluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Aula 12: WordNet | Introdução à Linguagem de Programação Python *** com NLTK

 Fonte -> https://youtu.be/0OCq31jQ9E4 A WordNet do Brasil -> http://www.nilc.icmc.usp.br/wordnetbr/ NLTK  synsets = dada uma palavra acha todos os significados, pode informar a língua e a classe gramatical da palavra (substantivo, verbo, advérbio) from nltk.corpus import wordnet as wn wordnet.synset(xxxxxx).definition() = descrição do significado É possível extrair hipernimia, hiponimia, antonimos e os lemas (diferentes palavras/expressões com o mesmo significado) formando uma REDE LEXICAL. Com isso é possível calcular a distância entre 2 synset dentro do grafo.  Veja trecho de código abaixo: texto = 'útil' print('NOUN:', wordnet.synsets(texto, lang='por', pos=wordnet.NOUN)) texto = 'útil' print('ADJ:', wordnet.synsets(texto, lang='por', pos=wordnet.ADJ)) print(wordnet.synset('handy.s.01').definition()) texto = 'computador' for synset in wn.synsets(texto, lang='por', pos=wn.NOUN):     print('DEF:',s

DGL-KE : Deep Graph Library (DGL)

Fonte: https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Amazon recently launched DGL-KE, a software package that simplifies this process with simple command-line scripts. With DGL-KE , users can generate embeddings for very large graphs 2–5x faster than competing techniques. DGL-KE provides users the flexibility to select models used to generate embeddings and optimize performance by configuring hardware, data sampling parameters, and the loss function. To use this package effectively, however, it is important to understand how embeddings work and the optimizations available to compute them. This two-part blog series is designed to provide this information and get you ready to start taking advantage of DGL-KE . Finally, another class of graphs that is especially important for knowledge graphs are multigraphs . These are graphs that can have multiple (directed) edges between the same pair of nodes and can also contain loops. The