Pular para o conteúdo principal

Controversas e Incongruências na WD - estatísticas

WD de Junho de 2022

# and % and distribution of %, of controversial statements

559,038,971 CLAIMS
132,552,453 potencialmente controversos

23,71%

(base) root@vm096:/home/cloud-di# zcat /app/kgtk/data/wikidata/claims.tsv.gz | wc -l
559,038,972

(base) root@vm096:/home/cloud-di# more /app/kgtk/data/my-tsv/filtered-claims-sorted-uniq.tsv.gz | wc -l
132,552,454

# and % and distribution of % of controversial properties

9,653 PROPERTIES (All)
2,143 potencialmente controversos

22,20 %

Comando

(base) root@vm096:/app/kgtk/temp# cat /app/kgtk/data/my-tsv/all-claims-pred-counted.tsv | wc -l
9654

(base) root@vm096:/app/kgtk/temp# cat /app/kgtk/data/my-tsv/filtered-pred-count-sorted.tsv | wc -l
2144

TOP 10 PROPERTIES (All)

(base) root@vm096:/app/kgtk/temp# kgtk sort -i /app/kgtk/data/my-tsv/all-claims-pred-counted.tsv -c node2 --reverse-columns node2 --numeric-columns node2 / head
node1   label   node2
P31     count   59717980
P1215   count   33122376
P528    count   28738709
P17     count   14996553
P131    count   11371144
P106    count   9608349
P625    count   9267000
P2215   count   8207685
P3083   count   8150658
P6257   count   8091255

TOP 10 PROPERTIES (potencialmente controversos)

(base) root@vm096:/app/kgtk/temp# kgtk sort -i /app/kgtk/data/my-tsv/filtered-pred-count-sorted.tsv  -c node2 --reverse-columns node2 --numeric-columns node2 / head
node1   label   node2
P1215   count   32818006
P528    count   26283488
P2215   count   8207274
P31     count   5407077
P684    count   4306414
P106    count   3987622
P1087   count   2866023
P1082   count   2016139
P361    count   1940350
P527    count   1679292

# and % and distribution of % of qualification for controversial statements

141,983,745 QUALIFICATION FOR CLAIMS (All)
104,362,344 qualificações para algeações potencialmente controversas

87,83 %

Comando

(base) cloud-di@vm096:~$ zcat /app/kgtk/data/my-tsv/quals-sorted.tsv.gz | wc -l
141,983,746

(base) root@vm096:/home/cloud-di# zcat /app/kgtk/data/my-tsv/filtered-quals-sorted.tsv.gz | wc -l
104,362,345

# and % and distribution of % of different qualifiers in controversial statements

9,905 QUALIFIERS (All)
8,700 potencialmente controversos

87,83 %

Comando

(base) root@vm096:/app/kgtk/temp# more /app/kgtk/data/my-tsv/quals-counted.tsv | wc -l
9,907

(base) root@vm096:/app/kgtk/temp# more /app/kgtk/data/my-tsv/filtered-quals-counted.tsv | wc -l
8,701

TOP 10 QUALIFIERS (All)

(base) root@vm096:/app/kgtk/temp# kgtk sort -i /app/kgtk/data/my-tsv/quals-counted.tsv -c node2 --reverse-columns node2 --numeric-columns node2 / head
node1   label   node2
P1227   count   33122324
P972    count   23776643
P585    count   10432968
P642    count   8966228
P459    count   7930570
P580    count   7048511
P703    count   4317830
P582    count   3601028
P1545   count   3597770
P1057   count   2776317

TOP 10 QUALIFIERS (potencialmente controversos)

(base) root@vm096:/app/kgtk/temp# kgtk sort -i /app/kgtk/data/my-tsv/filtered-quals-counted.tsv -c node2 --reverse-columns node2 --numeric-columns node2 / head
node1   label   node2
P1227   count   32818028
P972    count   22180541
P642    count   8480507
P585    count   7860132
P459    count   5364796
P703    count   4304082
P580    count   3331943
P582    count   2525992
P1545   count   2474157
P1013   count   813579

# and % and distribution of % of controversial statements without qualifiers (contextually incomplete)

132,552,453 potencialmente controversos
2,599,600 potencialmente controversos por incompletude

1,96 %

Comando

(base) root@vm096:/home/cloud-di# more /app/kgtk/data/my-tsv/filtered-claims-sorted-uniq.tsv.gz | wc -l
132,552,454

(base) root@vm096:/app/kgtk/temp# more /app/kgtk/data/my-tsv/filtered-claims-without-quals-sorted.tsv.gz | wc -l
2,599,601

Comentários

Postagens mais visitadas deste blog

Aula 12: WordNet | Introdução à Linguagem de Programação Python *** com NLTK

 Fonte -> https://youtu.be/0OCq31jQ9E4 A WordNet do Brasil -> http://www.nilc.icmc.usp.br/wordnetbr/ NLTK  synsets = dada uma palavra acha todos os significados, pode informar a língua e a classe gramatical da palavra (substantivo, verbo, advérbio) from nltk.corpus import wordnet as wn wordnet.synset(xxxxxx).definition() = descrição do significado É possível extrair hipernimia, hiponimia, antonimos e os lemas (diferentes palavras/expressões com o mesmo significado) formando uma REDE LEXICAL. Com isso é possível calcular a distância entre 2 synset dentro do grafo.  Veja trecho de código abaixo: texto = 'útil' print('NOUN:', wordnet.synsets(texto, lang='por', pos=wordnet.NOUN)) texto = 'útil' print('ADJ:', wordnet.synsets(texto, lang='por', pos=wordnet.ADJ)) print(wordnet.synset('handy.s.01').definition()) texto = 'computador' for synset in wn.synsets(texto, lang='por', pos=wn.NOUN):     print('DEF:',s...

truth makers AND truth bearers - Palestra Giancarlo no SBBD

Dando uma googada https://iep.utm.edu/truth/ There are two commonly accepted constraints on truth and falsehood:     Every proposition is true or false.         [Law of the Excluded Middle.]     No proposition is both true and false.         [Law of Non-contradiction.] What is the difference between a truth-maker and a truth bearer? Truth-bearers are either true or false; truth-makers are not since, not being representations, they cannot be said to be true, nor can they be said to be false . That's a second difference. Truth-bearers are 'bipolar,' either true or false; truth-makers are 'unipolar': all of them obtain. What are considered truth bearers?   A variety of truth bearers are considered – statements, beliefs, claims, assumptions, hypotheses, propositions, sentences, and utterances . When I speak of a fact . . . I mean the kind of thing that makes a proposition true or false. (Russe...

DGL-KE : Deep Graph Library (DGL)

Fonte: https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Amazon recently launched DGL-KE, a software package that simplifies this process with simple command-line scripts. With DGL-KE , users can generate embeddings for very large graphs 2–5x faster than competing techniques. DGL-KE provides users the flexibility to select models used to generate embeddings and optimize performance by configuring hardware, data sampling parameters, and the loss function. To use this package effectively, however, it is important to understand how embeddings work and the optimizations available to compute them. This two-part blog series is designed to provide this information and get you ready to start taking advantage of DGL-KE . Finally, another class of graphs that is especially important for knowledge graphs are multigraphs . These are graphs that can have multiple (directed) edges between the same pair of nodes and can also contain loops. The...