Pular para o conteúdo principal

Conteúdo Gerado pelo Usuario - Redes Sociais X Movimento Wiki

 Link -> https://diff.wikimedia.org/2021/09/15/disinformation-and-ai-the-differences-between-wikipedia-and-social-media/

Let’s start pointing out some key differences: While most dynamics in social media are about sharing opinions and gaining popularity, Wikipedia is about sharing in the sum of all knowledge. Wikipedia’s unique goal and process presents both challenges to applying machine learning techniques used by large social media platforms to identify disinformation and opportunities for new, more human-centered approaches. Let’s start by comparing these two different paradigms. First of all, your social network activity reflects your thoughts and interests, on the other hand, a Wikipedia article is collectively created, or in other words is a commons, without a single owner. Second, the lifecycle on social networks content is very short, but for Wikipedia it is about perennial knowledge. And last, but not least, in social networks you can do – almost – whatever you want respecting a very general set of “terms and conditions” designed by the platform owners, while in Wikipedia there are procedures and policies for writing articles, created by the community, including key points like keeping a neutral point of view and using reliable and verifiable sources.

[Diferenças cruciais para separar UGC de Social Media Content]

However, problems for the most popular social networks are related with their business model: they need to allow people to say whatever they want, and – probably the most important part – to show people content that increases their engagement, usually reinforcing their beliefs. Content trustworthiness is not the aim of those companies; they need just to control extreme cases. This filtering process is known as content moderation. And given the huge amount of content they need to moderate, big tech companies are putting a lot of effort and hopes on developing tools based on Machine Learning (a.k.a Artificial Intelligence) to help – and take the lead – on detecting and removing that extreme content.

Misleading information can happen in Wikipedia when edits do not fulfill content policies. This can be on purpose with the intention of deception (disinformation) or it can be accidental (misinformation). Whatever the motivation, the community regulates itself. 

[Processo social inerente ao crowdsourcing, não visa dar popularidade a indivíduos]

Wikipedia can’t have a unique ground-truth, because its aim is to be the sum of all human knowledge, so there is no single point of reference, and moreover, all significant points of view  – supported by reliable sources – needs to be represented. Wikipedia “moderation” is not about the truth, it is about verifiability of content through reliable sources. And the rules don’t come from a unique central authority, they are designed, reviewed and applied by a community of editors, through a well-established deliberation process.

[Verdade Relativa e diferentes perspectivas precisam ser contempladas para uma visão neutra]

In summary, the challenges on fighting disinformation on Wikipedia require dedicated effort that goes beyond addressing the traditional “fact-checking” problem. Differently from Social Networks where algorithms are expected to do the work that no one else is doing, in Wikipedia we need algorithms able to help the current editor’s workflows, implying that our baseline is much more challenging.

[Não tem por objetivo Fact-Checking]

 

Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graph Embedding with Triple Context - Leitura de Abstract

  Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. 2017. Knowledge Graph Embedding with Triple Context. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). Association for Computing Machinery, New York, NY, USA, 2299–2302. https://doi.org/10.1145/3132847.3133119 ABSTRACT Knowledge graph embedding, which aims to represent entities and relations in vector spaces, has shown outstanding performance on a few knowledge graph completion tasks. Most existing methods are based on the assumption that a knowledge graph is a set of separate triples, ignoring rich graph features, i.e., structural information in the graph. In this paper, we take advantages of structures in knowledge graphs, especially local structures around a triple, which we refer to as triple context. We then propose a Triple-Context-based knowledge Embedding model (TCE). For each triple, two kinds of structure information are considered as its context in the graph; one is the out...

KnOD 2021

Beyond Facts: Online Discourse and Knowledge Graphs A preface to the proceedings of the 1st International Workshop on Knowledge Graphs for Online Discourse Analysis (KnOD 2021, co-located with TheWebConf’21) https://ceur-ws.org/Vol-2877/preface.pdf https://knod2021.wordpress.com/   ABSTRACT Expressing opinions and interacting with others on the Web has led to the production of an abundance of online discourse data, such as claims and viewpoints on controversial topics, their sources and contexts . This data constitutes a valuable source of insights for studies into misinformation spread, bias reinforcement, echo chambers or political agenda setting. While knowledge graphs promise to provide the key to a Web of structured information, they are mainly focused on facts without keeping track of the diversity, connection or temporal evolution of online discourse data. As opposed to facts, claims are inherently more complex. Their interpretation strongly depends on the context and a vari...