Pular para o conteúdo principal

RDF Leveled the Advantages of LPG and Keeps 3 Key Benefits - Webinar Ontotext

Vídeo ->  https://youtu.be/8nbb6CwpPMA
 
RDF-star and SPARQL Path-Search Leveled the Advantages of LPG
RDF Keeps 3 Key Benefits: Standards, Semantics and Interoperability
 
Historical advantages of LPG:
o
Attaching properties to the edges of a graph
o
Efficient graph traversal
 
- Gremlin seria mais eficiente nas consultas de caminho
 
RDF completely leveled those over the last 3 years:

o
RDF-star simple mechanism to attach metadata to the edges
o
SPARQL extensions for exploration of multi-hop relationships in graphs
 
-RDF Star para adicionar metadados as triplas
 
o RDF-star offers more than edge properties
o
Graph traversal boosted by reasoning
o
Knowledge graphs’ added value
o
RDF is better for knowledge graphs
 
RDF-star allows edge descriptions, Statements about statements
Allows multiple level of nesting
Backward compatible
 
- Reificação acrescenta complexidade aos dados e aumento o espaço de armazenamento e o tempo de carga
 
Use case: Access control for vocabulary management ... como no exemplo do Allegro mas esse não suporta RDF-Star
 
  
 
Nem todos suportam RDF-Star com aninhamento de triplas, a referência a triplas não "afirmadas" e outras operações
 
Graphs and Path Traversal,  Common tasks:
o
Check if two nodes are connected
o
Find the shortest path between two nodes
o
Find all paths between two nodes
o
Find all neighboring nodes of distance X
 
- BFS, DFS, etc ... 
 
Graph path search use cases
o
Road navigation
o
Knowledge graph analysis
o
Supply Chain analysis
o
Causality mining
o
Recommendation
o
Social network analysis
 
 Limitations of SPARQL for path search
 
o Possible with SPARQL 1.1 property paths, HOWEVER:
They uncover the start and end nodes, but not the intermediate ones
Shortest path is tough
 
- Converter consultas de caminho de tamanho fixo (NGP) em BGP/CGP ficam complexas
 
o
Workarounds are ugly and slow
o
To address this, all major triplestores made SPARQL extensions
 
Graph path search: Querying SHORTEST PATH
Directional (by default) as well as bidirectional search
 
- extensões através de SERVICE, GraphDB tem uma extensão path:search onde é possível especificar, nó origem, nó destino, máximo de distância, os predicados do caminho, etc ...
 
 
 
LDBC Social Network Benchmark (SNB)
Linked Data Benchmarking Council: TPC-like body for graph databases
LDBC SNB is the most comprehensive graph analytics benchmark
Analytics-oriented loads designed to simulate operations in a social network platform
Lots of research work invested in a sophisticated data generator, making sure the data
distributions and connectivity are “good”: both realistic and challenging
 
- Neo4J foi o primeiro a se certificar no SNB  
- entidades Pessoas, Cidades, Companhia, Universidade
- GraphDB é o primeiro TripleStore a se certificar em SNB(em processo de auditoria) 
- a função de shortest path usa inferência
 
KG - Unified view across diverse information
Solving such problems requires unified view across:
o
Diverse databases w/o centralized control
o
Text documents and other unstructured content
o
Both proprietary & global knowledge 
 
 
 
 
 
- diversidade de fontes e formatos
 
All these problems require comprehensive domain knowledge:
o
Awareness of over 100k concepts
o
Highly interconnected reference data
o
Relationships, which semantics really matter
 
- usar Taxonomia da Empresa
 
What’s the added value of knowledge graphs?
Enterprise KGs serve as hubs for data, metadata and content.
All sorts of data and metadata!

Enriched with even more
semantic metadata
 
- metadados padrão e metadados semânticos sobre relações com outras entidades do grafo
 
How does the knowledge graphs magic work?
1. Link data to knowledge to put it in context
When connected, two entities describe each other
Conceptual networks allow better interpretation than tables
100K connected entity descriptions is a PhD level
2.
Overlay semantic metadata to assure unambiguous interpretation
“Diverse data”: data used for different purposes in different contexts
Data is likely to be misinterpreted outside its primary context
Clear formal specification of the meaning of data pieces is a must
3.
Semantic data model + Stable reference data => Easy updates + Reuse
Semantic metadata lowers the cost to discover and reuse data & models
 
How is RDF better than any other DM paradigm?
o Explicit formal semantics
To align the different modelling assumptions of the different IT systems
Data validation to maintain good quality
o Interoperability
Federation and remote-access protocols
Web-native syntax and global identifiers
Thousands of datasets available as linked data
o
Standards
For everything: syntax, schema, query and update languages, ...
Future proof data management
Reduced vendor lock-in
 
- RDF e SHACL para especificar a semântica a nível de esquema,  protocolos padrão de acesso, diversidade e volume em fontes públicas (LOD), padrões W3C
 
 What do LPG lack to serve knowledge graphs? Nem um dos 3 anteriores
 
     
 
 
“Schema support and metadata management are crucial aspects of enterprise data management systems. RDF has advantages in both of these areas”    
“The need to manage URIs and metadata, as well as perform SEO functions, makes this use case an ideal match for RDF”
“Dependency tracking can be dealt with equally well by LPG and RDF solutions. When it comes to metadata management, however, we believe this is an area in which RDF solutions have traditionally emphasized, and excelled in”
 
 

Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graph Embedding with Triple Context - Leitura de Abstract

  Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. 2017. Knowledge Graph Embedding with Triple Context. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). Association for Computing Machinery, New York, NY, USA, 2299–2302. https://doi.org/10.1145/3132847.3133119 ABSTRACT Knowledge graph embedding, which aims to represent entities and relations in vector spaces, has shown outstanding performance on a few knowledge graph completion tasks. Most existing methods are based on the assumption that a knowledge graph is a set of separate triples, ignoring rich graph features, i.e., structural information in the graph. In this paper, we take advantages of structures in knowledge graphs, especially local structures around a triple, which we refer to as triple context. We then propose a Triple-Context-based knowledge Embedding model (TCE). For each triple, two kinds of structure information are considered as its context in the graph; one is the out...

KnOD 2021

Beyond Facts: Online Discourse and Knowledge Graphs A preface to the proceedings of the 1st International Workshop on Knowledge Graphs for Online Discourse Analysis (KnOD 2021, co-located with TheWebConf’21) https://ceur-ws.org/Vol-2877/preface.pdf https://knod2021.wordpress.com/   ABSTRACT Expressing opinions and interacting with others on the Web has led to the production of an abundance of online discourse data, such as claims and viewpoints on controversial topics, their sources and contexts . This data constitutes a valuable source of insights for studies into misinformation spread, bias reinforcement, echo chambers or political agenda setting. While knowledge graphs promise to provide the key to a Web of structured information, they are mainly focused on facts without keeping track of the diversity, connection or temporal evolution of online discourse data. As opposed to facts, claims are inherently more complex. Their interpretation strongly depends on the context and a vari...