Pular para o conteúdo principal

SPARQL x Query using Context Meta-information (Triple Properties as Named Graphs)

Utilizando o recurso de Quad onde cada tripla pode ser identificada como um grafo

Testes via AllegroGraph WebView na VM032

PREFIX ns: <http://example.org/ns#>

INSERT DATA {ns:c1 rdf:type ns:Country; ns:name 'Germany';  ns:language 'German'; ns:continent 'Europe'; ns:population 83000000 };
INSERT DATA {ns:c2 rdf:type ns:Country; ns:name 'France'; ns:language 'French'; ns:continent 'Europe'; ns:population 67000000 };
INSERT DATA {ns:c3 rdf:type ns:Country; ns:name 'United Kingdom'; ns:language 'English'; ns:continent 'Europe'; ns:population: 66000000 };

INSERT DATA {ns:p1 rdf:type ns:Person; ns:name 'John' };
INSERT DATA {ns:p2 rdf:type ns:Person; ns:name 'Harry'};
INSERT DATA {ns:p3 rdf:type ns:Person; ns:name 'Anna'};

INSERT DATA {GRAPH ns:p1c1_1 {ns:p1 ns:LIVING_IN ns:c1}};
INSERT DATA {ns:p1c1_1  ns:date_of_start 2014};
INSERT DATA {GRAPH ns:p1c2_1 {ns:p1 ns:WORKING_IN ns:c2}};
INSERT DATA {ns:p1c2_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p1c3_1 { ns:p1 ns:LIVING_IN ns:c3}};
INSERT DATA {ns:p2c3_1  ns:date_of_start 2014};
INSERT DATA {GRAPH ns:p1c3_2 { ns:p1 ns:WORKING_IN ns:c3}};
INSERT DATA {ns:p2c3_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p3c1_1 { ns:p3 ns:LIVING_IN ns:c1}};
INSERT DATA {ns:p3c1_1  ns:date_of_start 2016};
INSERT DATA {GRAPH ns:p3c3_1 { ns:p3 ns:WORKING_IN ns:c3}};
INSERT DATA {ns:p3c3_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p1p2_1 { ns:p1 ns:FRIENDS_WITH ns:p2}};
INSERT DATA {ns:p1p2_1  ns:date_of_start 2011};
INSERT DATA {GRAPH ns:p3p1_1 { ns:p3 ns:FRIENDS_WITH ns:p1}};
INSERT DATA {ns:p3p1_1  ns:date_of_start 2012} ;
INSERT DATA {GRAPH ns:p3p2_1 {ns:p3 ns:FRIENDS_WITH ns:p2}};
INSERT DATA {ns:p3p2_1  ns:date_of_start 2014};

--

# This PREFIX causes the default graph of the dataset to include
# only triples that are not in a named graph.
# Otherwise, the default graph will include every triple.
PREFIX franzOption_defaultDatasetBehavior: <franz:rdf>

# View quads
SELECT ?s ?p ?o ?g {
  # default graph
  { ?s ?p ?o . }
  UNION
  # named graphs
  { GRAPH ?g { ?s ?p ?o . }  }
}

--

SELECT ?s ?p ?o ?g { GRAPH ?g { ?s ?p ?o . }  }

--

SELECT ?s ?p ?c ?g
{ ?c rdf:type ns:Country; ns:name 'United Kingdom'.
GRAPH ?g { ?s ?p ?c . }   
?g ns:date_of_start 2014}

--

SELECT ?p_name ?f_name ?o ?g
WHERE {
GRAPH ?g { ?p ns:FRIENDS_WITH ?f. }.
?p rdf:type ns:Person; ns:name ?p_name.
?f ns:name ?f_name.
?g ns:date_of_start ?o.
FILTER (?o > 2010) .
}

--

SELECT ?p_name ?f_name ?o2 ?g2
WHERE {
GRAPH ?g1 { ?p ns:FRIENDS_WITH ?f1. }.
GRAPH ?g2 { ?p ns:FRIENDS_WITH ?f2. }.
?p rdf:type ns:Person; ns:name ?p_name.
?f2 ns:name ?f_name.
?g1 ns:date_of_start ?o1.
?g2 ns:date_of_start ?o2.
FILTER (?o2 > ?o1) .
}

--

SELECT ?p1_name ?p2_name ?p3_name ?p4_name ?o ?g2
WHERE {
GRAPH ?g1 { ?p1 ns:FRIENDS_WITH ?p3. }.
GRAPH ?g2 { ?p2 ns:FRIENDS_WITH ?p4. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
?p3 rdf:type ns:Person; ns:name ?p3_name.
?p4 rdf:type ns:Person; ns:name ?p4_name.
?g1 ns:date_of_start ?o.
?g2 ns:date_of_start ?o.
FILTER (?p1 != ?p2) .
}

--

SELECT ?p1_name ?p2_name ?c1_name ?c2_name ?o ?g2
WHERE {
GRAPH ?g1 { ?p1 ns:LIVING_IN ?c1. }.
GRAPH ?g2 { ?p2 ns:LIVING_IN ?c2. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
?c1 rdf:type ns:Country; ns:name ?c1_name.
?c2 rdf:type ns:Country; ns:name ?c2_name.
?g1 ns:date_of_start ?o.
?g2 ns:date_of_start ?o.
FILTER (?p1 != ?p2) .
}

--

PREFIX ns: <http://example.org/ns#>

SELECT ?p1_name ?p2_name ?o ?g
WHERE {
GRAPH ?g { ?p1 ns:FRIENDS_WITH+ ?p2. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
OPTIONAL {?g ns:date_of_start ?o. FILTER (?o > 2010) .}
}

--

PREFIX ns: <http://example.org/ns#>

INSERT DATA {GRAPH ns:p1p2_2 { ns:p1 ns:FRIENDS_OF ns:p2}};
INSERT DATA {GRAPH ns:p3p1_2 { ns:p3 ns:FRIENDS_OF ns:p1}};
INSERT DATA {ns:p1p2_2  ns:date_of_start 2018};
INSERT DATA {ns:p3p1_2  ns:date_of_start 2019} ;

SELECT ?o ?g
WHERE {
GRAPH ?g { ns:p3 ns:FRIENDS_OF+ ns:p2. }.
?g ns:date_of_start ?o.
}

OBS.: Property path entre diferentes "grafos" não funciona pq existe um caminho p3p1_2 - p3p1_2  que não é recuperado com a query acima

Outras referências com SPARQL

Como recuperar os relacionamentos entre classes

select distinct ?class {?s1 a ?class}

Como recuperar os relacionamentos entre classes

select distinct ?class1 ?p ?class2 {?s1 a ?class1; ?p ?s2 . ?s2 a ?class2.}  order by ?class1

Como recuperar os atributos das classes

select distinct ?class ?p {?s a ?class; ?p ?o . filter isLiteral (?o).}  order by ?class
# View triples filtrando palavras chaves no literal do objeto
SELECT ?s ?p ?o { ?s ?p ?o . (?s ?o) fti:match '<palavra chave>'.}
 
Os caminhos de propriedade são expressões regulares sobre o vocabulário I de todos os IRIs, para os quais “/” é concatenação, “|” disjunção, inversão “ˆ”, asterisco “∗” (zero ou mais ocorrências), “+” uma ou mais ocorrências e “?” zero ou uma ocorrência. 

Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graphs as a source of trust for LLM-powered enterprise question answering - Leitura de Artigo

J. Sequeda, D. Allemang and B. Jacob, Knowledge Graphs as a source of trust for LLM-powered enterprise question answering, Web Semantics: Science, Services and Agents on the World Wide Web (2025), doi: https://doi.org/10.1016/j.websem.2024.100858. 1. Introduction These question answering systems that enable to chat with your structured data hold tremendous potential for transforming the way self service and data-driven decision making is executed within enterprises. Self service and data-driven decision making in organizations today is largly made through Business Intelligence (BI) and analytics reporting. Data teams gather the original data, integrate the data, build a SQL data warehouse (i.e. star schemas), and create BI dashboards and reports that are then used by business users and analysts to answer specific questions (i.e. metrics, KPIs) and make decisions. The bottleneck of this approach is that business users are only able to answer questions given the views of existing dashboa...

Knowledge Graph Toolkit (KGTK)

https://kgtk.readthedocs.io/en/latest/ KGTK represents KGs using TSV files with 4 columns labeled id, node1, label and node2. The id column is a symbol representing an identifier of an edge, corresponding to the orange circles in the diagram above. node1 represents the source of the edge, node2 represents the destination of the edge, and label represents the relation between node1 and node2. >> Quad do RDF, definir cada tripla como um grafo   KGTK defines knowledge graphs (or more generally any attributed graph or hypergraph ) as a set of nodes and a set of edges between those nodes. KGTK represents everything of meaning via an edge. Edges themselves can be attributed by having edges asserted about them, thus, KGTK can in fact represent arbitrary hypergraphs. KGTK intentionally does not distinguish attributes or qualifiers on nodes and edges from full-fledged edges, tools operating on KGTK graphs can instead interpret edges differently if they so desire. In KGTK, e...