Pular para o conteúdo principal

SPARQL x Query using Context Meta-information (Triple Properties as Named Graphs)

Utilizando o recurso de Quad onde cada tripla pode ser identificada como um grafo

Testes via AllegroGraph WebView na VM032

PREFIX ns: <http://example.org/ns#>

INSERT DATA {ns:c1 rdf:type ns:Country; ns:name 'Germany';  ns:language 'German'; ns:continent 'Europe'; ns:population 83000000 };
INSERT DATA {ns:c2 rdf:type ns:Country; ns:name 'France'; ns:language 'French'; ns:continent 'Europe'; ns:population 67000000 };
INSERT DATA {ns:c3 rdf:type ns:Country; ns:name 'United Kingdom'; ns:language 'English'; ns:continent 'Europe'; ns:population: 66000000 };

INSERT DATA {ns:p1 rdf:type ns:Person; ns:name 'John' };
INSERT DATA {ns:p2 rdf:type ns:Person; ns:name 'Harry'};
INSERT DATA {ns:p3 rdf:type ns:Person; ns:name 'Anna'};

INSERT DATA {GRAPH ns:p1c1_1 {ns:p1 ns:LIVING_IN ns:c1}};
INSERT DATA {ns:p1c1_1  ns:date_of_start 2014};
INSERT DATA {GRAPH ns:p1c2_1 {ns:p1 ns:WORKING_IN ns:c2}};
INSERT DATA {ns:p1c2_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p1c3_1 { ns:p1 ns:LIVING_IN ns:c3}};
INSERT DATA {ns:p2c3_1  ns:date_of_start 2014};
INSERT DATA {GRAPH ns:p1c3_2 { ns:p1 ns:WORKING_IN ns:c3}};
INSERT DATA {ns:p2c3_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p3c1_1 { ns:p3 ns:LIVING_IN ns:c1}};
INSERT DATA {ns:p3c1_1  ns:date_of_start 2016};
INSERT DATA {GRAPH ns:p3c3_1 { ns:p3 ns:WORKING_IN ns:c3}};
INSERT DATA {ns:p3c3_1  ns:date_of_start 2014};

INSERT DATA {GRAPH ns:p1p2_1 { ns:p1 ns:FRIENDS_WITH ns:p2}};
INSERT DATA {ns:p1p2_1  ns:date_of_start 2011};
INSERT DATA {GRAPH ns:p3p1_1 { ns:p3 ns:FRIENDS_WITH ns:p1}};
INSERT DATA {ns:p3p1_1  ns:date_of_start 2012} ;
INSERT DATA {GRAPH ns:p3p2_1 {ns:p3 ns:FRIENDS_WITH ns:p2}};
INSERT DATA {ns:p3p2_1  ns:date_of_start 2014};

--

# This PREFIX causes the default graph of the dataset to include
# only triples that are not in a named graph.
# Otherwise, the default graph will include every triple.
PREFIX franzOption_defaultDatasetBehavior: <franz:rdf>

# View quads
SELECT ?s ?p ?o ?g {
  # default graph
  { ?s ?p ?o . }
  UNION
  # named graphs
  { GRAPH ?g { ?s ?p ?o . }  }
}

--

SELECT ?s ?p ?o ?g { GRAPH ?g { ?s ?p ?o . }  }

--

SELECT ?s ?p ?c ?g
{ ?c rdf:type ns:Country; ns:name 'United Kingdom'.
GRAPH ?g { ?s ?p ?c . }   
?g ns:date_of_start 2014}

--

SELECT ?p_name ?f_name ?o ?g
WHERE {
GRAPH ?g { ?p ns:FRIENDS_WITH ?f. }.
?p rdf:type ns:Person; ns:name ?p_name.
?f ns:name ?f_name.
?g ns:date_of_start ?o.
FILTER (?o > 2010) .
}

--

SELECT ?p_name ?f_name ?o2 ?g2
WHERE {
GRAPH ?g1 { ?p ns:FRIENDS_WITH ?f1. }.
GRAPH ?g2 { ?p ns:FRIENDS_WITH ?f2. }.
?p rdf:type ns:Person; ns:name ?p_name.
?f2 ns:name ?f_name.
?g1 ns:date_of_start ?o1.
?g2 ns:date_of_start ?o2.
FILTER (?o2 > ?o1) .
}

--

SELECT ?p1_name ?p2_name ?p3_name ?p4_name ?o ?g2
WHERE {
GRAPH ?g1 { ?p1 ns:FRIENDS_WITH ?p3. }.
GRAPH ?g2 { ?p2 ns:FRIENDS_WITH ?p4. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
?p3 rdf:type ns:Person; ns:name ?p3_name.
?p4 rdf:type ns:Person; ns:name ?p4_name.
?g1 ns:date_of_start ?o.
?g2 ns:date_of_start ?o.
FILTER (?p1 != ?p2) .
}

--

SELECT ?p1_name ?p2_name ?c1_name ?c2_name ?o ?g2
WHERE {
GRAPH ?g1 { ?p1 ns:LIVING_IN ?c1. }.
GRAPH ?g2 { ?p2 ns:LIVING_IN ?c2. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
?c1 rdf:type ns:Country; ns:name ?c1_name.
?c2 rdf:type ns:Country; ns:name ?c2_name.
?g1 ns:date_of_start ?o.
?g2 ns:date_of_start ?o.
FILTER (?p1 != ?p2) .
}

--

PREFIX ns: <http://example.org/ns#>

SELECT ?p1_name ?p2_name ?o ?g
WHERE {
GRAPH ?g { ?p1 ns:FRIENDS_WITH+ ?p2. }.
?p1 rdf:type ns:Person; ns:name ?p1_name.
?p2 rdf:type ns:Person; ns:name ?p2_name.
OPTIONAL {?g ns:date_of_start ?o. FILTER (?o > 2010) .}
}

--

PREFIX ns: <http://example.org/ns#>

INSERT DATA {GRAPH ns:p1p2_2 { ns:p1 ns:FRIENDS_OF ns:p2}};
INSERT DATA {GRAPH ns:p3p1_2 { ns:p3 ns:FRIENDS_OF ns:p1}};
INSERT DATA {ns:p1p2_2  ns:date_of_start 2018};
INSERT DATA {ns:p3p1_2  ns:date_of_start 2019} ;

SELECT ?o ?g
WHERE {
GRAPH ?g { ns:p3 ns:FRIENDS_OF+ ns:p2. }.
?g ns:date_of_start ?o.
}

OBS.: Property path entre diferentes "grafos" não funciona pq existe um caminho p3p1_2 - p3p1_2  que não é recuperado com a query acima

Outras referências com SPARQL

Como recuperar os relacionamentos entre classes

select distinct ?class {?s1 a ?class}

Como recuperar os relacionamentos entre classes

select distinct ?class1 ?p ?class2 {?s1 a ?class1; ?p ?s2 . ?s2 a ?class2.}  order by ?class1

Como recuperar os atributos das classes

select distinct ?class ?p {?s a ?class; ?p ?o . filter isLiteral (?o).}  order by ?class
# View triples filtrando palavras chaves no literal do objeto
SELECT ?s ?p ?o { ?s ?p ?o . (?s ?o) fti:match '<palavra chave>'.}
 
Os caminhos de propriedade são expressões regulares sobre o vocabulário I de todos os IRIs, para os quais “/” é concatenação, “|” disjunção, inversão “ˆ”, asterisco “∗” (zero ou mais ocorrências), “+” uma ou mais ocorrências e “?” zero ou uma ocorrência. 

Comentários

Postagens mais visitadas deste blog

Aula 12: WordNet | Introdução à Linguagem de Programação Python *** com NLTK

 Fonte -> https://youtu.be/0OCq31jQ9E4 A WordNet do Brasil -> http://www.nilc.icmc.usp.br/wordnetbr/ NLTK  synsets = dada uma palavra acha todos os significados, pode informar a língua e a classe gramatical da palavra (substantivo, verbo, advérbio) from nltk.corpus import wordnet as wn wordnet.synset(xxxxxx).definition() = descrição do significado É possível extrair hipernimia, hiponimia, antonimos e os lemas (diferentes palavras/expressões com o mesmo significado) formando uma REDE LEXICAL. Com isso é possível calcular a distância entre 2 synset dentro do grafo.  Veja trecho de código abaixo: texto = 'útil' print('NOUN:', wordnet.synsets(texto, lang='por', pos=wordnet.NOUN)) texto = 'útil' print('ADJ:', wordnet.synsets(texto, lang='por', pos=wordnet.ADJ)) print(wordnet.synset('handy.s.01').definition()) texto = 'computador' for synset in wn.synsets(texto, lang='por', pos=wn.NOUN):     print('DEF:',s

truth makers AND truth bearers - Palestra Giancarlo no SBBD

Dando uma googada https://iep.utm.edu/truth/ There are two commonly accepted constraints on truth and falsehood:     Every proposition is true or false.         [Law of the Excluded Middle.]     No proposition is both true and false.         [Law of Non-contradiction.] What is the difference between a truth-maker and a truth bearer? Truth-bearers are either true or false; truth-makers are not since, not being representations, they cannot be said to be true, nor can they be said to be false . That's a second difference. Truth-bearers are 'bipolar,' either true or false; truth-makers are 'unipolar': all of them obtain. What are considered truth bearers?   A variety of truth bearers are considered – statements, beliefs, claims, assumptions, hypotheses, propositions, sentences, and utterances . When I speak of a fact . . . I mean the kind of thing that makes a proposition true or false. (Russell, 1972, p. 36.) “Truthmaker theories” hold that in order for any truthbe

DGL-KE : Deep Graph Library (DGL)

Fonte: https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef Amazon recently launched DGL-KE, a software package that simplifies this process with simple command-line scripts. With DGL-KE , users can generate embeddings for very large graphs 2–5x faster than competing techniques. DGL-KE provides users the flexibility to select models used to generate embeddings and optimize performance by configuring hardware, data sampling parameters, and the loss function. To use this package effectively, however, it is important to understand how embeddings work and the optimizations available to compute them. This two-part blog series is designed to provide this information and get you ready to start taking advantage of DGL-KE . Finally, another class of graphs that is especially important for knowledge graphs are multigraphs . These are graphs that can have multiple (directed) edges between the same pair of nodes and can also contain loops. The