Pular para o conteúdo principal

Foundations of RDF⋆ and SPARQL⋆ - Leitura de Artigo

Hartig, Olaf. “Foundations of RDF⋆ and SPARQL⋆ (An Alternative Approach to Statement-Level Metadata in RDF).” AMW (2017).
 
The term statement-level metadata refers to a form of data that captures information about another piece of data representing a single statement or fact. A typical example are so called edge properties in graph databases; such an edge property takes the form of a key-value pair that captures additional information about the relationship represented by the edge with which the key-value pair is associated
 
While the Resource Description Framework (RDF) [1] presents another graph-based approach to represent statements about entities and their relationships, its triple-based data model does not natively support the representation of statement-level meta-data. To mitigate this limitation the RDF specification introduces the notion of RDF reification which can be used to provide a set of RDF triples that describe some other RDF triple  
 
The example highlights two major shortcomings of RDF reification: First, adding four reification triples for every reified triple is inefficient for exchanging RDF data. Second, writing queries to access statement-level metadata is cumbersome because any metadata-related (sub)expression in a query has to be accompanied by another subexpression to match the corresponding four reification triples.
 
That is, in the extended language, called SPARQL*, triple patterns may also be nested, which gives users a query syntax in which accessing specific metadata about a triple is just a matter of mentioning the triple in the subject (or object) position of a metadata-related triple pattern.
 
As a basis for the following definitions, we assume pairwise disjoint sets I (all IRIs), B(blank nodes), and L(literals). As usual, a tuple in (I∪B)×I×(I∪B∪L) is an RDF triple and a set of RDF triples is an RDF graph [1]. RDF* extends the notion of such triples by allowing for triples that have another triple in its subject or its object position. Such nesting may be arbitrarily deep. The following definition captures this notion.
 
Definition 1. An RDF* triple is a 3-tuple that is defined recursively as follows:
1. Any RDF triple t (I∪B) ×I×(I∪B∪L) is an RDF* triple; and
2. Given RDF* triples t and t, and RDF terms s (I ∪ B), p ∈ I and o (I ∪ B ∪ L), then the tuples (t,p,o), (s,p,t) and (t,p,t) are RDF* triples.
 
We recall that the basic building block of SPARQL queries is a basic graph pattern (BGP); that is, a finite set of triple patterns, where every triple pattern is a tuple of the form (s,p,o) (V ∪ I ∪ L) ×(V ∪ I) ×(V ∪ I ∪ L) with V being a set of query variables that is disjoint from I, B, and L, respectively. SPARQL? extends these patterns by adding the possibility to nest triple patterns within one another.
 
Definition 2. A triple* pattern is a 3-tuple that is defined recursively as follows:
1. Any triple pattern t (V ∪ I ∪ L) × (V ∪ I) × (V ∪ I ∪ L) is a triple* pattern; and
2. Given two triple* patterns tp and tp', and s (V ∪ I ∪ L), p (V ∪ I) and o (V ∪ I ∪ L), then (tp,p,o), (s,p,tp) and (tp,p,tp') are triple* patterns.
 
Before defining a query semantics of SPARQL*, we recall that the semantics of SPARQL is defined based on the notion of solution mappings [2,7], that is, partial mappings μ: V → (I ∪ B ∪ L). For SPARQL* we extend this notion to so-called solution* mappings that may bind variables not only to IRIs, blank nodes, or literals, but also to RDF* triples. Hence, a solution* mapping η is a partial mapping η : V →(T* ∪ I ∪ B ∪ L).
 
A triple-to-ID mapping id is an injective function id : T* (I ∪ B).
   
 
 

Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

KnOD 2021

Beyond Facts: Online Discourse and Knowledge Graphs A preface to the proceedings of the 1st International Workshop on Knowledge Graphs for Online Discourse Analysis (KnOD 2021, co-located with TheWebConf’21) https://ceur-ws.org/Vol-2877/preface.pdf https://knod2021.wordpress.com/   ABSTRACT Expressing opinions and interacting with others on the Web has led to the production of an abundance of online discourse data, such as claims and viewpoints on controversial topics, their sources and contexts . This data constitutes a valuable source of insights for studies into misinformation spread, bias reinforcement, echo chambers or political agenda setting. While knowledge graphs promise to provide the key to a Web of structured information, they are mainly focused on facts without keeping track of the diversity, connection or temporal evolution of online discourse data. As opposed to facts, claims are inherently more complex. Their interpretation strongly depends on the context and a vari...

Aprendizado de Máquina Relacional

 Extraído de -> https://www.lncc.br/~ziviani/papers/Texto-MC1-SBBD2019.pdf   Aprendizado de máquina relacional (AMR) destina-se à criação de modelos estatísticos para dados relacionais (seria o mesmo que dados conectados) , isto é, dados cuja a informação relacional é tão ou mais impor tante que a informação individual (atributos) de cada elemento.    Essa classe de aprendizado tem sido utilizada em diversas aplicações, por exemplo, na extração de informação de dados não estruturados [Zhang et al. 2016] e na modelagem de linguagem natural [Vu et al. 2018].   A adoção de técnicas de aprendizado de máquina relacional em tarefas de comple mentação de grafo de conhecimento se baseia na premissa de existência de regularidades semânticas presentes no mesmo . Modelos grafos probabilísticos  Baseada em regras / heurísticas que não podem garantir 100% de precisão no resultado da inferência mas os resultados podem ser explicados. Modelos de características de ...