Pular para o conteúdo principal

ER2020 - Others interesting articles about Data Modeling Databases

 

Diagram depicting the key differences between SQL Database and NoSQL Databases.
https://www.scylladb.com/resources/nosql-vs-sql/

A Workload-driven Document Database Schema Recommender (DBSR)

  • https://youtu.be/APVlxebtmLI

Aggregate oriented modeling

Input: ER Model, Read Workload (JOIN), Configurations 

First step: create a Normalize document structure and analyze the JOIN steps

Refinements of query plans removing JOINS and embeddings documents, merging document structures based on entities relationships, in order to reduce Read Operations costs

Outuput: Doument collections, query plans (with indexes) and utility matrix of recommendations

An Empirical Study on the Design and Evolution of NoSQL Database Schemas

  • https://youtu.be/Mz7P6pp5TvY

 Lack of empirical study in NoSQL

10 selected projects from GitHub: denormalized is commom but it isn't a rule, NoSQL takes longer to stabilize compared to SQL (in general), change the type of the attribute is more frequent than other schemas changes


Neo4j Keys

  • https://youtu.be/qQQ9DuBPIrU

 
Neo4J key = label + property attributes
Complete: all node have
Uniqueness: there is no two or more nodes with the value
Neo4J don't support multi-label key
 

Discovering Data Models from Event Logs

  •  https://youtu.be/J2nxUxE-r_I
 
Process Model and Data Model
Step 1 => Input: Event Log     Output:A2A Diagram = Activities x Attributes relationship
Four rule to separate A2A
 
 
 
 

Comentários

  1. Esse que usou o GitHub é bem interessante pq partiu de projetos de aplicações e conseguiu identificar um padrão de comportamento para NoSQL

    ResponderExcluir

Postar um comentário

Sinta-se a vontade para comentar. Críticas construtivas são sempre bem vindas.

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graphs as a source of trust for LLM-powered enterprise question answering - Leitura de Artigo

J. Sequeda, D. Allemang and B. Jacob, Knowledge Graphs as a source of trust for LLM-powered enterprise question answering, Web Semantics: Science, Services and Agents on the World Wide Web (2025), doi: https://doi.org/10.1016/j.websem.2024.100858. 1. Introduction These question answering systems that enable to chat with your structured data hold tremendous potential for transforming the way self service and data-driven decision making is executed within enterprises. Self service and data-driven decision making in organizations today is largly made through Business Intelligence (BI) and analytics reporting. Data teams gather the original data, integrate the data, build a SQL data warehouse (i.e. star schemas), and create BI dashboards and reports that are then used by business users and analysts to answer specific questions (i.e. metrics, KPIs) and make decisions. The bottleneck of this approach is that business users are only able to answer questions given the views of existing dashboa...

Knowledge Graph Toolkit (KGTK)

https://kgtk.readthedocs.io/en/latest/ KGTK represents KGs using TSV files with 4 columns labeled id, node1, label and node2. The id column is a symbol representing an identifier of an edge, corresponding to the orange circles in the diagram above. node1 represents the source of the edge, node2 represents the destination of the edge, and label represents the relation between node1 and node2. >> Quad do RDF, definir cada tripla como um grafo   KGTK defines knowledge graphs (or more generally any attributed graph or hypergraph ) as a set of nodes and a set of edges between those nodes. KGTK represents everything of meaning via an edge. Edges themselves can be attributed by having edges asserted about them, thus, KGTK can in fact represent arbitrary hypergraphs. KGTK intentionally does not distinguish attributes or qualifiers on nodes and edges from full-fledged edges, tools operating on KGTK graphs can instead interpret edges differently if they so desire. In KGTK, e...