Pular para o conteúdo principal

The GraphTech Ecosystem 2019

Um série de 3 artigos de abrilde2019 que cobrem as 3 camadas

Image for post

Graph Databases

Cada Graph Database presente nessa imagem é apresentado entre o slide 5 e o 81 da apresentação que consta no final do artigo.

graph database list

 types of graph databases

Graph Analytics

Cada tecnologia da camada de Analytics presente na próxima imagem consta na apresentação do final do artigo.

  1. Graph processing frameworks / engines (slide 5 ao 26)
  2. Graph analytics libraries and toolkits (slide 28 ao 46) 
  3. Query languages (slide 48 ao 64)

graph analytics

Giraph, GraphX (Apache Spark),  Faunus (Hadoop)

Graph Visualization

list graph visualization libraries

Gephi, Cytospace 

graph visualizers

Alguns Graph Databases possuem visualizadores como o Neo4J e o Allegro (Gruff)

Os artigos são atualizações de um artigo originalmente publicado (2014) em https://linkurio.us/blog/introduction-graph-technologies-landscape/

Um importante insight do último artigo que me lembrou o comentário que o professor Villas fez sobre o Busc@NIMA:

Visualization tools represent an important bridge between graph data and analysts. It helps surface information and insights leading to the understanding of a situation, or the solving of a problem.

While it’s easy to read and comprehend non-graph data in a tabular format such as a spreadsheet, you will probably miss valuable information if you try to analyze connected data the same way. 

Representing connected data in tables is not intuitive and often hides the connections in which lies the value.

Graph visualization tools turn connected data into graphical network representations that takes advantage of the human brain proficiency to recognize visual patterns and more pattern variations.


Comentários

Postagens mais visitadas deste blog

Connected Papers: Uma abordagem alternativa para revisão da literatura

Durante um projeto de pesquisa podemos encontrar um artigo que nos identificamos em termos de problema de pesquisa e também de solução. Então surge a vontade de saber como essa área de pesquisa se desenvolveu até chegar a esse ponto ou quais desdobramentos ocorreram a partir dessa solução proposta para identificar o estado da arte nesse tema. Podemos seguir duas abordagens:  realizar uma revisão sistemática usando palavras chaves que melhor caracterizam o tema em bibliotecas digitais de referência para encontrar artigos relacionados ou realizar snowballing ancorado nesse artigo que identificamos previamente, explorando os artigos citados (backward) ou os artigos que o citam (forward)  Mas a ferramenta Connected Papers propõe uma abordagem alternativa para essa busca. O problema inicial é dado um artigo de interesse, precisamos encontrar outros artigos relacionados de "certa forma". Find different methods and approaches to the same subject Track down the state of the art rese...

Knowledge Graph Embedding with Triple Context - Leitura de Abstract

  Jun Shi, Huan Gao, Guilin Qi, and Zhangquan Zhou. 2017. Knowledge Graph Embedding with Triple Context. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). Association for Computing Machinery, New York, NY, USA, 2299–2302. https://doi.org/10.1145/3132847.3133119 ABSTRACT Knowledge graph embedding, which aims to represent entities and relations in vector spaces, has shown outstanding performance on a few knowledge graph completion tasks. Most existing methods are based on the assumption that a knowledge graph is a set of separate triples, ignoring rich graph features, i.e., structural information in the graph. In this paper, we take advantages of structures in knowledge graphs, especially local structures around a triple, which we refer to as triple context. We then propose a Triple-Context-based knowledge Embedding model (TCE). For each triple, two kinds of structure information are considered as its context in the graph; one is the out...

KnOD 2021

Beyond Facts: Online Discourse and Knowledge Graphs A preface to the proceedings of the 1st International Workshop on Knowledge Graphs for Online Discourse Analysis (KnOD 2021, co-located with TheWebConf’21) https://ceur-ws.org/Vol-2877/preface.pdf https://knod2021.wordpress.com/   ABSTRACT Expressing opinions and interacting with others on the Web has led to the production of an abundance of online discourse data, such as claims and viewpoints on controversial topics, their sources and contexts . This data constitutes a valuable source of insights for studies into misinformation spread, bias reinforcement, echo chambers or political agenda setting. While knowledge graphs promise to provide the key to a Web of structured information, they are mainly focused on facts without keeping track of the diversity, connection or temporal evolution of online discourse data. As opposed to facts, claims are inherently more complex. Their interpretation strongly depends on the context and a vari...